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Introduction 
 
The work in this proposal is designed to investigate the role of pericentrin as an oncogene 
in prostate cancer. Pericentrin is a centrosome protein involved in organizing mitotic 
spindles to ensure proper chromosome segregation (Doxsey et al, 2005; Zimmerman et 
al, 2004). Centrosomes are tiny cellular organelles that duplicate once per cell cycle and 
the pair of centrosomes forms the two poles of the mitotic spindle during cell division. 
Each centrosome is comprised of two microtubule barrels called centrioles. Our previous 
work and that of another group was the first to show that centrosome defects were present 
in nearly all prostate cancers (Pihan et al, 1998; Lingle et al, 1998) and that centrosome 
defects were present in preinvasive lesions of the prostate (Pihan et al, 2003). Other 
studies from our group showed that pericentrin overexpression induced features of 
prostate cancer cells including aneuploidy, centrosome and spindle defects, increased 
growth in soft agar and changes in cell morphology (Pihan et al, 2001). To expand on 
these observations, we are currently testing whether other known oncogenes and tumor 
suppressors contribute to the pericentrin-induced phenotype.  
 
Body 
 
Katryn Harwood initiated the work described in this proposal. She left the Doxsey 
laboratory and I, Chun-Ting Chen, have taken over the project in the last few months. 
Over the last year, Kathryn and I have made progress on both Aims of this proposal. I 
have focused on cell lines that I had been using before the grant transfer (HeLa, SAOS, 
RPE). The Doxsey lab has in hand several normal prostate epithelial cells and prostate 
cancer cells and I will now focus my efforts on these cells. In Aim 1, we found that 
pericentrin truncations lacking the PKA binding domain decrease the ability of 
pericentrin to induce spindle abnormalities and aneuploidy. We are currently making 
single point mutations in this domain to rule out nonspecific effects of protein truncation 
and we are also making similar truncations and mutations in the PKC and PKB binding 
domains of pericentrin.   
 
Work on Aim 2 has yielded new and exciting results and we are now focusing most of 
our efforts here. In Aim 2 we are testing the effect of altering pericentrin levels in cells 
with alterations in levels of other oncogenes and tumor suppressors. We had previously 
shown that an increase in pericentrin levels induces an increase in centrosome number 
(Pihan et al, 2001). We now show that depletion of pericentrin by RNA interference (Fig. 
1, using small interfering RNAs, siRNAs, Elbashir et al, 2001) induced the opposite 
effect, loss of centrioles/centrosomes, as well as defects in centrosome structure 
(centriole separation, Fig. 2). Moreover, these structural defects occurred together with 
functional changes in centrosomes including loss of primary cilia and reduced ability to 
duplicate centrosomes (Fig. 3). Primary cilia are solitary cilia that function as sensors 
(e.g. rods, cones) and are implicated in cell division control (Pazour and Witman, 2003). 
The functional changes induced by pericentrin depletion were also the opposite of 
pericentrin overexpression, which results in “overduplication” of centrosomes (Pihan et 
al, 2001). Thus, it appears that modulating pericentrin levels can control centrosome 
number and centrosome integrity, two parameters that are likely to be important for cell 
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viability (centrosome duplication and integrity) and tumor potential (excess centrosomes, 
which can lead to multipolar spindles, chromosome instability and aneuploidy).  
 
Upon further investigation we found that pericentrin depletion induced cell cycle arrest in 
normal human diploid cells (Fig. 4). This suggested a mechanism (cell cycle arrest) for 
preventing the deleterious downstream consequences of centrosome ‘damage’ and 
centrosome dysfunction. These data suggest the presence of a new checkpoint that 
monitors ‘centrosome damage’ just as the DNA damage checkpoint monitors DNA 
damage. The presumed checkpoint has all the expected elements. It is initiated by a 
defect (centrosome damage) that induces a signal (transducer, p53) and a possible 
receiver (p38).  
 
In another set of experiments and to our surprise (unintentionally actually), we found that 
cells with functionally inactive or altered p53 suppressed the cell cycle arrest induced by 
pericentrin depletion (Fig. 5). This allowed the cells to cycle in the presence of 
centrosome ‘damage’. This suggested that cells that slip through the checkpoint might 
suffer the consequences of centrosome damage.   
 
To test this, we examined p53-deficient cells at different time periods after RNAi 
treatment. Two days after RNAi treatment we found cells that often lacked centrosomes 
at spindle poles. The cells accumulated in metaphase with monopolar spindles (as 
expected if centrosomes are damaged or lost and cannot make a bipolar spindle). To 
further examine the ultimate consequences of centrosome and spindle defects we looked 
at longer times after siRNA treatment, something we do not typically do. For this reason,  
we had to split and replate cells and retreat with siRNAs targeting pericentrin. We found 
that at these later times (>48hours), there was a significant decrease in the number of 
pericentrin siRNA treated cells compared with control siRNA treated cells. Upon closer 
inspection, we found that the cells appeared to be dying as they were rounding up and 
detaching from the plate. In fact, through the use of an apoptotic marker (M30) we could 
show that there was a ~5-fold increase in apoptosis in pericentrin siRNA treated cells 
(Fig. 6). Subsequently, we showed that p38 inhibitors suppressed the cell cycle arrest, 
suggesting that the p38 stress activated kinase is required for this checkpoint, in addition 
to p53. We are now testing other molecules (tumor suppressors, oncogenes, regulatory 
proteins) that are known to be involved in or associated with prostate cancer (e.g. PTEN, 
Akt) to see if they suppress the G1 arrest and thus induce cancer-cell-specific cell death. 
We will test whether pericentrin depletion acts antagonistically with p53 and p38 and 
other prostate associated molecules in the induction of cell cycle arrest in normal prostate 
epithelial cells (gift of Dr. William Hahn, see Berger et al, 2004) and p53 wild type cell 
lines (e.g. LNCaP) and in the induction of apoptotic death in prostate tumor cells with 
abrogated p53 (PC3, DU-145). This work identifies a potentially novel pathway for 
treating prostate cancer, namely depletion of pericentrin in cells with abrogated 
regulatory pathways (p53, p38) and potentially other pathways (PTEN, AKT). 
 
Key research accomplishments 
 
 *Pericentrin depletion causes centrosome defects and centrosome loss. 
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*Pericentrin depletion causes loss of primary cilia and blocks centrosome duplication 
(centrosome over-duplication is implicated in supernumerary centrosomes and 
aneuploidy in prostate cancer) 
 
*Pericentrin depletion arrests diploid cells in G1. 
 
*Pericentrin induced cell cycle arrest is p53-dependent.  
 
* Pericentrin induced cell cycle arrest seems to be p38 dependent. 
 
*This work identifies a potentially a new checkpoint that monitors “centrosome damage”. 
 
* p53-deficient cells continue to cycle in the presence of structural and functional defects 
in centrosomes. 
 
*p53-deficient cells ultimately die by apoptosis as a result of centrosome and spindle 
defects.  
 
*These results suggest a cancer-cell-specific treatment for prostate cancer. Pericentrin 
depletion would kill cells with abrogated p53 function but would spare normal prostate 
epithelial cells. The latter would arrest until the ‘centrosome damage’ is repaired (e.g. 
after the pharmacological treatment of patients with pericentrin inhibitors). 
 
Reportable outcomes 
 
*Constructed GFP-centrin cell lines (RPE, HeLa) to study centrosome duplication (I plan 
to make similar lines in prostate epithelia and tumor cells) 
 
*Produced GFP-gamma tubulin cell lines (RPE, HeLa) to study centrosome duplication (I 
plan to make similar lines in prostate epithelia and tumor cells) 
 
*Produced a GFP-IFT20 HeLa cell line to study primary cilia formation. 
 
Conclusions 
 
During the last year, we have made two important discoveries. The first is that we 
identified a potentially new checkpoint that monitors loss of centrosome integrity. Like 
DNA damage, this checkpoint is overcome when molecules that control the pathway 
(p53, p38) are depleted or inhibited. The e second discovery is that cells that lack p53, 
p38 and likely other regulatory molecules do not undergo cell cycle arrest. Slippage 
through the centrosome damage checkpoint may provide a unique door into combating 
prostate cancer. It may provide a prostate cancer cell specific mechanism for eliminating 
prostate cancers, in that normal prostate epithelial cells will arrest in the cell cycle while 
tumor cells deficient for p53, p38 and perhaps other prostate cancer specific molecules of 
the pathway will die when pericentrin is depleted. 
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Figure Legends. Fig. 1. Pericentrin depletion induces loss of the protein at centrosomes. 87% of the pericentrin siRNA 
treated cells have centrosome intensities that are less than the lowest level in controls (lamin). Each bar represents the 
fluorescence intensity of one centrosome. Fig. 2. Immunofluorescence staining of the two centrioles of the centrosome 
showing separation in pericentrin depleted cells (right, 25.7% of cells) compared with tight association in controls (left, 
only 3.5% separated).  Fig. 3. U2OS cells treated with  hydroxyurea show expected centrosome overduplication in  
control cells (left, multiple clustered dots, GFP siRNA) compared with a reduced number in pericentrin siRNA treated 
cells (right). Fig. 4. Flow cytometeric analysis showing that pericentrin depleted cells (blue) do not shift from the G1  
peak (-noc) to the G2/M peak in the presence of nocodazole (+noc) whereas control cells do (red, +noc). Fig. 5. p53 
deficient cells do not arrest in G1. Fig. 6. The percentage of apoptotic cells is dramatically higher in pericentrin siRNA 
treated cells deficient in p53 (HeLa) whereas control cells (GFP siRNA treated) have a lower percentage of apoptotic 
cells. 
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